首页> 外文OA文献 >A Copula Based Bayesian Approach for Paid-Incurred Claims Models for Non-Life Insurance Reserving
【2h】

A Copula Based Bayesian Approach for Paid-Incurred Claims Models for Non-Life Insurance Reserving

机译:基于Copula的贝叶斯方法求解付费索赔模型   非人寿保险

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Our article considers the class of recently developed stochastic models thatcombine claims payments and incurred losses information into a coherentreserving methodology. In particular, we develop a family of HeirarchicalBayesian Paid-Incurred-Claims models, combining the claims reserving models ofHertig et al. (1985) and Gogol et al. (1993). In the process we extend theindependent log-normal model of Merz et al. (2010) by incorporating differentdependence structures using a Data-Augmented mixture Copula Paid-Incurredclaims model. The utility and influence of incorporating both payment and incurred lossesinto estimating of the full predictive distribution of the outstanding lossliabilities and the resulting reserves is demonstrated in the following cases:(i) an independent payment (P) data model; (ii) the independentPayment-Incurred Claims (PIC) data model of Merz et al. (2010); (iii) a noveldependent lag-year telescoping block diagonal Gaussian Copula PIC data modelincorporating conjugacy via transformation; (iv) a novel data-augmented mixtureArchimedean copula dependent PIC data model. Inference in such models is developed via a class of adaptive Markov chainMonte Carlo sampling algorithms. These incorporate a data-augmentationframework utilized to efficiently evaluate the likelihood for the copula basedPIC model in the loss reserving triangles. The adaptation strategy is based onrepresenting a positive definite covariance matrix by the exponential of asymmetric matrix as proposed by Leonard et al. (1992).
机译:本文考虑了最近开发的一类随机模型,该模型将索赔额和已发生的损失信息组合到一个相关的保留方法中。特别是,我们结合了Hertig等人的索赔保留模型,开发了一系列Heirarchical Bayesian有偿索赔模型。 (1985)和Gogol等。 (1993)。在这个过程中,我们扩展了Merz等人的独立对数正态模型。 (2010年),通过使用数据增强的混合Copula付费产生的索赔模型合并不同的依赖性结构。在以下情况下证明了将支付和已发生的损失合并到未偿还的负债和所产生的准备金的完整预测分布中的效用和影响:(i)独立支付(P)数据模型; (ii)Merz等人的独立付款引起的索赔(PIC)数据模型。 (2010); (iii)一种新颖的依赖滞后年伸缩块对角线的高斯Copula PIC数据模型,其中包含通过变换的共轭; (iv)一种新颖的数据增强混合依赖阿希米德斯系动词的PIC数据模型。通过一类自适应马尔可夫链蒙特卡洛采样算法开发了此类模型中的推论。这些结合了数据增强框架,用于有效地评估损失保留三角形中基于copula的PIC模型的可能性。自适应策略基于Leonard等人提出的通过不对称矩阵的指数表示正定协方差矩阵。 (1992)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号